(812) 309-78-59
(495) 223-46-76
Без обозначения
Handbook of Nanotechnology: Nanometer Structure Theory, Modeling, and Simulation
Справочник по нанотехнологии: теория структуры нанометра, макетирование и моделирование
575 стр.
Действует
Печатное издание
135,70 $ (включая НДС 18%)
Разработчик:
ASME
Тематика:
Chemical/Process
Описание

Серия справочников по нанотехнологии содержит профессиональные справочные материалы по нанотехнологии, предлагая читателям комбинацию учебного материала и обзор современного уровня развития технологии.

Первый том посвящен макетированию и моделированию на наношкале.

Восемь самостоятельных глав настоящего тома, имеющих название структуры нанометра: теория, макетирование и моделирование – покрытие наноструктурированных пленок, структуры фотонных энергетических щелей, квантовые точки, карбонированные нанотрубки, атомистические технологии, наномеханика, нанопневмоника, и обработка квантовой информации.

Исследования по макетированию и моделированию, представленные по данным темам, достигли определённой завершенности, позволяющей учитывать их результаты.

Не смотря на то, что общей направленностью настоящего издания является предоставление справочных материалов для опытных исследователей, в нем также содержится информация, представляющая интерес для начинающих исследователей.

Уровень представления материала в каждой главе подразумевает наличие базовых знаний на уровне технического образования или образования в области естественных наук.

The Handbook of Nanotechnology series provides a professional reference in nanotechnology, offering readers a combination of tutorial material and review of the state of the art.
This initial volume focuses on modeling and simulation at the nanoscale.

The eight substantive chapters of this volume-entitled Nanometer Structures: Theory, Modeling and Simulation-cover nanostructured thin films, photonic bandgap structures, quantum dots, carbon nanotubes, atomistic techniques, nanomechanics, nanofluidics, and quantum information processing.
Modeling and simulation research on these topics has acquired a sufficient degree of maturity as to merit inclusion.

While the intent is to serve as a reference source for expert researchers, there is sufficient content for novice researchers as well.
The level of presentation in each chapter assumes a fundamental background at the level of an engineering or science graduate.

Содержание

Preface v
Foreword vii
Chapter 1 - Editorial
1.1 Introduction
1.2 Coverage
1.3 Concluding remark
Chapter 2 - Sculptured Thin Films
2.1. Introduction 6
2.2. Genesis 7
2.2.1. Columnar thin films 7
2.2.2. Primitive STFs with nematic morphology 9
2.2.3. Chiral sculptured thin films 9
2.2.4. Sculptured thin films 10
2.3. Electromagnetic fundamentals 11
2.3.1. Linear constitutive relations 11
2.3.2. From the nanostructure to the continuum 13
2.3.3. Electromagnetic wave propagation 16
2.3.4. Reflection and transmission 17
2.4. Dielectric STFs 21
2.4.1. Relative permittivity dyadics 22
2.4.2. Local homogenization 23
2.4.3. Wave propagation 24
2.5. Applications 26
2.5.1. Optical filters 26
2.5.2. Optical fluid sensors 29
2.5.3. Chiral PBG materials 29
2.5.4. Displays 30
2.5.5. Optical interconnects 30
2.5.6. Optical pulse shapers 30
2.5.7. Biochips 30
2.5.8. Other applications 31
2.6. Directions for future research 32
References 33
List of Symbols 41
Chapter 3 - Photonic Bandgap Structures
3.1. Introduction 46
3.2. One-dimensional structures 47
3.2.1. Finite periodic structures: arbitrary angles of incidence 47
3.2.2. Brief summary of infinite periodic structures 51
3.2.3. Finite periodic structures: perpendicular incidence 55
3.2.4. Slowly varying envelope techniques 61
3.2.5. Nonlinear optics in 1D PBGs 62
3.3. Higher dimensions 63
3.3.1. Vector wave equations 64
3.3.2. Two dimensions 65
3.3.3. Dielectric fluctuations 68
3.3.4. Band structure 69
3.3.5. Band eigenfunction symmetry and uncoupled modes 71
3.3.6. Three dimensions 73
3.4. Summary 88
3.5. Appendix A 89
3.6. Appendix B 95
References 98
List of symbols 105
Chapter 4 - Quantum Dots: Phenomenology, Photonic and Electronic Properties, Modeling and Technology
4.1. Introduction 109
4.1.1. What are they? 109
4.1.2. History 111
4.2. Fabrication 112
4.2.1. Nanocrystals 112
4.2.2. Lithographically defined quantum dots 114
4.2.3. Field-effect quantum dots 116
4.2.4. Self-assembled quantum dots 116
4.3. QD spectroscopy 118
4.3.1. Microphotoluminescence 118
4.3.2. Scanning near-field optical spectroscopy 120
4.4. Physics of quantum dots 121
4.4.1. Quantum dot eigenstates 122
4.4.2. Electromagnetic fields 123
4.4.3. Photonic properties 125
4.4.4. Carrier transport 127
4.4.5. Carrier dynamics 129
4.4.6. Dephasing 129
4.5. Modeling of atomic and electronic structure 130
4.5.1. Atomic structure calculations 131
4.5.2. Quantum confinement 132
4.6. QD technology and perspectives 133
4.6.1. Vertical-cavity surface-emitting QD laser 134
4.6.2. Biological labels 134
4.6.3. Electron pump 135
4.6.4. Applications you should be aware of 136
References 137
List of symbols
Chapter 5 - Nanoelectromagnetics of Low-Dimensional Structures
5.1. Introduction 146
5.2. Electron transport in carbon nanotubes 148
5.2.1. Dispersion properties of p-electrons 148
5.2.2. Bloch equation for p-electrons 151
5.3. Linear electrodynamics of carbon nanotubes 153
5.3.1. Dynamic conductivity 153
5.3.2. Effective boundary conditions 156
5.3.3. Surface electromagnetic waves 157
5.3.4. Edge effects 159
5.4. Nonlinear processes in carbon nanotubes 162
5.4.1. Current density spectrum in an isolated CN 163
5.4.2. Negative differential conductivity in an isolated CN 167
5.5. Quantum electrodynamics of carbon nanotubes 170
5.5.1. Maxwell equations for electromagnetic field operators 170
5.5.2. Spontaneous decay of an excited atom in a CN 172
5.6. Semiconductor quantum dot in a classical electromagnetic field 177
5.6.1. Model Hamiltonian 178
5.6.2. Equations of motion 182
5.6.3. QD polarization 183
5.7. Interaction of QD with quantum light 184
5.7.1. Model Hamiltonian 184
5.7.2. Equations of motion 186
5.7.3. Interaction with single-photon states 187
5.7.4. Scattering of electromagnetic Fock qubits 189
5.7.5. Observability of depolarization 192
5.8. Concluding remarks 194
Acknowledgments 194
References 194
List of symbols 203
Chapter 6 - Atomistic Simulation Methods
6.1. Introduction 208
6.2. Determininistic atomistic computer simulation methodologies 210
6.2.1. Microcanonical molecular dynamics 210
6.2.2. Canonical ensemble molecular dynamics 211
6.2.3. Other ensembles 215
6.2.4. Interatomic potentials 216
6.2.5. Thermostating a buckyball: an illustrative example 217
6.3. Stochastic atomistic computer simulation methodologies 221
6.3.1. Canonical Monte Carlo 221
6.3.2. Grand canonical Monte Carlo 223
6.3.3. Lattice Monte Carlo 225
6.3.4. Self-assembly of surfactants 226
6.3.5. Kinetic Monte Carlo 230
6.3.6. Application of kinetic MC to self-assembly of protein subcellular nanostructures 230
6.4. Multiscale simulation schemes 233
6.4.1. Coupling of MD and MC simulations 234
6.4.2. Coupling of an atomistic system with a continuum 239
6.5. Concluding remarks 243
References 244
List of symbols 252
Chapter 7 - Nanomechanics
7.1. Overview 256
7.1.1. Introduction 256
7.1.2. Aim and scope 256
7.1.3. Notation 261
7.2. Continuum concepts 261
7.2.1. Forces, equilibrium, and stress tensor 262
7.2.2. Kinematics: deformation and strain tensor 265
7.2.3. Principle of virtual work 268
7.2.4. Constitutive relations 269
7.2.5. Boundary value problems and finite element method 270
7.3. Atomistic models 274
7.3.1. Total energy description 274
7.3.2. Atomistic simulation methods 287
7.4. Mixed models for nanomechanics 295
7.4.1. The quasicontinuum method 295
7.4.2. Augmented continuum theories 302
7.5. Concluding remarks 311
Acknowledgments 311
References 311
List of symbols 316
Chapter 8 - Nanoscale Fluid Mechanics
8.1. Introduction 320
8.2. Computational nanoscale fluid mechanics 322
8.2.1. Quantum mechanical calculations 323
8.2.2. Ab initio calculations 324
8.2.3. Atomistic computations 327
8.2.4. Multiscaling: linking macroscopic to atomistic scales 334
8.3. Experiments in nanoscale fluid mechanics 339
8.3.1. Diagnostic techniques for the nanoscale 339
8.3.2. Atomic force microscopy for fluids at the nanoscale 344
8.4. Fluid-solid interfaces at the nanoscale 347
8.4.1. Hydrophobicity and wetting 347
8.4.2. Slip flow boundary conditions 350
8.5. Fluids in confined geometries 355
8.5.1. Flow motion in nanoscale channels 355
8.5.2. Phase transitions of water in confined geometries 360
8.6. Nanofluidic devices 362
8.6.1. Solubilization 363
8.6.2. Nanofluids 363
8.6.3. CNT as sensors and AFM tips 364
8.6.4. Carbon nanotubes as storage devices—adsorption 366
8.6.5. Nanofluidics for microscale technologies 367
8.7. Outlook—go with the flow 371
Acknowledgments 371
References 372
List of Symbols 392
Chapter 9 - Introduction to Quantum Information Theory
9.1. Overview 397
9.1.1. Introduction 397
9.1.2. Encoding information 397
9.1.3. Effective parallelism 398
9.1.4. Choosing a basis 400
9.1.5. Perspective 403
9.2. Basic quantum principles 405
9.2.1. Isolated systems 405
9.2.2. Quantum measurement 406
9.2.3. Mixed states 407
9.2.4. Open systems 409
9.2.5. Notation and Pauli matrices 412
9.2.6. No-cloning principle 413
9.3. Entanglement 414
9.3.1. Bell states and correlations 414
9.3.2. An experiment 415
9.3.3. Bell inequalities and locality 416
9.3.4. An important identity 417
9.3.5. More on entanglement 418
9.4. Quantum computation algorithms 420
9.4.1. The Deutsch–Jozsa problem 420
9.4.2. Grover’s algorithm 422
9.4.3. Period finding via the QFT 425
9.4.4. Implementing the quantum Fourier transform 429
9.5. Other types of quantum information processing 430
9.5.1. Quantum key distribution 430
9.5.2. Quantum cryptography 432
9.5.3. Dense coding 433
9.5.4. Quantum teleportation 434
9.5.5. Quantum communication 435
9.6. Dealing with noise 436
9.6.1. Accessible information 436
9.6.2. Channel capacity 439
9.6.3. Quantum error correction 441
9.6.4. Fault-tolerant computation 444
9.6.5. DFS encoding 445
9.7. Conclusion 446
9.7.1. Remarks 446
9.7.2. Recommendations for further reading 447
Appendix 9.A. Dirac notation 449
Appendix 9.B. Trace and partial trace 450
Appendix 9.C. Singular value and Schmidt decompositions 451
Appendix 9.D. A more complete description 453
9.D.1. Continuous variables 453
9.D.2. The hidden spatial wave function 453
9.D.3. The Pauli principle 454
Acknowledgment 454
References 455