(812) 309-78-59
(495) 223-46-76
ASTM D8210-19
Standard Test Method for Automatic Determination of Low-Temperature Viscosity of Automatic Transmission Fluids, Hydraulic Fluids, and Lubricants Using a Rotational Viscometer
13 стр.
Заменен
Электронный (pdf)Печатное издание
104.52 $ (включая НДС 20%)
Разработчик:
Зарубежные/ASTM
ICS:
75.100 Lubricants,. Including mineral oils, fluids for metal working and for temporary protection against corrosion / Смазки, индустриальные масла и связанные с ними продукты. Включая минеральные масла, жидкости для обработки металлов и для временной защиты от коррозии
Сборник (ASTM):
05.05 Petroleum Products, Liquid Fuels, and Lubricants (V): D7756–latest; Combustion Characteristics; Manufactured Carbon and Graphite Products / Нефтепродукты, жидкое топливо и смазочные материалы (V): с D7756 и далее; Характеристики возгорания; Искусственный углерод и изделия из графита
Тематика:
Petroleum
Описание
Значение и использование

5.1 The low-temperature, low-shear-rate viscosity of automatic transmission fluids, gear oils, torque and tractor fluids, power steering fluids, and hydraulic oils are of considerable importance to the proper operation of many mechanical devices. Low-temperature viscosity limits of these fluids are often specified to ensure their suitability for use and are cited in many specifications.

5.2 The manual test method, Test Method D2983, was developed to determine whether an automatic transmission fluid (ATF) would meet low-temperature performance criterion originally defined using a particular model viscometer.4 The viscosity range covered in the original ATF performance correlation studies was from less than 1000 mPa·s to more than 60 000 mPa·s. The success of the ATF correlation and the development of this test method has over time been applied to other fluids and lubricants such as gear oils, hydraulic fluids, and so forth.

5.3 The viscosity determined by this test method using option A was found to be statistically indistinguishable from Test Method D2983 – 16 measurements based on the ILS data to establish this test method’s precision.

5.4 Due to the shorter time at test temperature, results from the abbreviated thermal conditioning (Option B) may differ from results obtained with the 14 h soak at test temperature (Option A). For the samples used in developing this test method, results obtained with the abbreviated procedure (Option B) tended to be less than 14 h soak (Option A). This difference seemed to be larger for products that contained high wax base stock.

Область применения

1.1 This test method automates the determination of low temperature, low-shear-rate viscosity of driveline and hydraulic fluids, such as automatic transmission fluids, gear oils, hydraulic fluids, and other lubricants. It utilizes a thermoelectrically temperature-controlled sample chamber along with a programmable rotational viscometer. This test method covers a viscosity range of 300 mPa·s to 900 000 mPa·s measured at temperatures from –40 °C to –10 °C.

1.2 The precision data were determined at –40 °C and –26 °C for a viscosity range of 6380 mPa·s to 255 840 mPa·s.

1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard except those noted below.

1.3.1 Exception—The test method uses the SI unit, milliPascal-second (mPa·s), as the unit of viscosity. (1 cP = 1 mPa·s).

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.