(812) 309-78-59
(495) 223-46-76
ASTM E975-03(2008)
Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation
7 стр.
Заменен
Электронный (pdf)Печатное издание
96.72 $ (включая НДС 20%)
Разработчик:
Зарубежные/ASTM
ICS:
77.080.20 Steels / Стали
Сборник (ASTM):
03.01 Metals -- Mechanical Testing; Elevated and Low-Temperature Tests; Metallography / Металлы - Механические испытания, Испытания при высоких и низких температурах, Металлография
Тематика:
Physical & Mechanical Testing
Описание
Значение и использование

SignificanceRetained austenite with a near random crystallographic orientation is found in the microstructure of heat-treated low-alloy, high-strength steels that have medium (0.40 weight %) or higher carbon contents. Although the presence of retained austenite may not be evident in the microstructure, and may not affect the bulk mechanical properties such as hardness of the steel, the transformation of retained austenite to martensite during service can affect the performance of the steel.

UseThe measurement of retained austenite can be included in low-alloy steel development programs to determine its effect on mechanical properties. Retained austenite can be measured on a companion sample or test section that is included in a heat-treated lot of steel as part of a quality control practice. The measurement of retained austenite in steels from service can be included in studies of material performance.

Область применения

1.1 This practice covers the determination of retained austenite phase in steel using integrated intensities (area under peak above background) of X-ray diffraction peaks using chromium Kα or molybdenum Kα X-radiation.

1.2 The method applies to carbon and alloy steels with near random crystallographic orientations of both ferrite and austenite phases.

1.3 This practice is valid for retained austenite contents from 1 % by volume and above.

1.4 If possible, X-ray diffraction peak interference from other crystalline phases such as carbides should be eliminated from the ferrite and austenite peak intensities.

1.5 Substantial alloy contents in steel cause some change in peak intensities which have not been considered in this method. Application of this method to steels with total alloy contents exceeding 15 weight % should be done with care. If necessary, the users can calculate the theoretical correction factors to account for changes in volume of the unit cells for austenite and ferrite resulting from variations in chemical composition.

1.6 UnitsThe values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.

1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Ключевые слова:
austenite; crystallographic orientation; ferrite; martensite; retained austenite; X-ray diffraction; Austenite (retained); Austenitic steel; Crystallographic characteristics; Ferritic steel; HSLA (high-strength low-alloy) steel; Martensitic steel; Random crystallographic orientation; Retained austenite; Structural metals/alloys; X-ray diffraction analysis