(812) 309-78-59
(495) 223-46-76
ASTM E2005-10
Standard Guide for Benchmark Testing of Reactor Dosimetry in Standard and Reference Neutron Fields
6 стр.
Заменен
Печатное изданиеЭлектронный (pdf)
96.72 $ (включая НДС 20%)
Разработчик:
Зарубежные/ASTM
ICS:
27.120.10 Reactor engineering / Реакторная техника
Сборник (ASTM):
12.02 Nuclear (II), Solar, and Geothermal Energy; Radiation Processing / Ядерная энергия (II), Солнечная, и Геотермическая Энергия; Радиационная обработка
Тематика:
Nuclear Technology
Описание
Значение и использование

This guide describes approaches for using neutron fields with well known characteristics to perform calibrations of neutron sensors, to intercompare different methods of dosimetry, and to corroborate procedures used to derive neutron field information from measurements of neutron sensor response.

This guide discusses only selected standard and reference neutron fields which are appropriate for benchmark testing of light-water reactor dosimetry. The Standard Fields considered are neutron source environments that closely approximate the unscattered neutron spectra from 252Cf spontaneous fission and 235U thermal neutron induced fission. These standard fields were chosen for their spectral similarity to the high energy region (E > 2 MeV) of reactor spectra. The various categories of benchmark fields are defined in Terminology E170.

There are other well known neutron fields that have been designed to mockup special environments, such as pressure vessel mockups in which it is possible to make dosimetry measurements inside of the steel volume of the vessel. When such mockups are suitably characterized they are also referred to as benchmark fields. A variety of these engineering benchmark fields have been developed, or pressed into service, to improve the accuracy of neutron dosimetry measurement techniques. These special benchmark experiments are discussed in Guide E2006, and in Refs (1) and (2).

Область применения

1.1 This guide covers facilities and procedures for benchmarking neutron measurements and calculations. Particular sections of the guide discuss: the use of well-characterized benchmark neutron fields to calibrate integral neutron sensors; the use of certified-neutron-fluence standards to calibrate radiometric counting equipment or to determine interlaboratory measurement consistency; development of special benchmark fields to test neutron transport calculations; use of well-known fission spectra to benchmark spectrum-averaged cross sections; and the use of benchmarked data and calculations to determine the uncertainties in derived neutron dosimetry results.

1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

Ключевые слова:
activation dosimetry; benchmark neutron field; certified-neutron-fluence standards; fluence-transfer; neutron dosimetry; radiometric dosimetry; reference neutron field; standard neutron field; uncertainties; Benchmark processing/testing; Calibration--nuclear analysis instrumentation; Certified neutron-fluence standards; Dosimetry; Fluence-transfer; Neutron radiation--nuclear materials/applications; Radiometric dosimetry; Reference neutron fields