The spiral contractometer, properly used, will give reproducible results (see 8.5) over a wide range of stress values. Internal stress limits with this method can be specified for use by both the purchaser and the producer of plated or electroformed parts.
Plating with large tensile stresses will reduce the fatigue strength of a product made from high-strength steel. Maximum stress limits can be specified to minimize this. Other properties affected by stress include corrosion resistance, dimensional stability, cracking, and peeling.
In control of electroforming solutions, the effects of stress are more widely recognized, and the control of stress is usually necessary to obtain a usable electroform. Internal stress limits can be determined and specified for production control.
Internal stress values obtained by the spiral contractometer do not necessarily reflect the internal stress values found on a part plated in the same solution. Internal stress varies with many factors, such as coating thickness, preparation of substrate, current density, and temperature, as well as the solution composition. Closer correlation is achieved when the test conditions match those used to coat the part.
Область применения1.1 This test method covers the use of the spiral contractometer for measuring the internal stress of metallic coatings as produced from plating solutions on a helical cathode. The test method can be used with electrolytic and autocatalytic deposits.
1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.