Каталог стандартов

+7 (495) 223-46-76 +7 (812) 309-78-59
inform@normdocs.ru

ASTM B984-12

Заменен
Standard Specification for Electrodeposited Coatings of Palladium- Cobalt Alloy for Engineering Use — 7 стр.
Реферат

This specification covers requirements for electrodeposited palladium-cobalt alloy coatings containing approximately 80% of palladium and 20% of cobalt. It also covers composite coatings consisting of palladium-cobalt with a thin gold overplate for applications involving electrical contacts. Palladium and palladium-cobalt remain competitive finishes for high reliability applications. The specification deals with material classification, ordering information, materials and manufacture, coating requirements, sampling, test methods, special government requirements, and other requirements.

Область применения

1.1 This specification covers requirements for electrodeposited palladium-cobalt alloy coatings containing approximately 80% of palladium and 20% of cobalt. Composite coatings consisting of palladium-cobalt with a thin gold overplate for applications involving electrical contacts are also covered. Palladium and palladium-cobalt remain competitive finishes for high reliability applications.

1.2 Properties—Palladium is the lightest and least noble of the platinum group metals (1)2. IIt has the density of 12 gm per cubic centimeter, specific gravity of 12.0, that is substantially lower than the density of gold, 19.29 gm per cubic centimeter, specific gravity 19.3, and platinum 21.48 gm per cubic centimeter, specific gravity 21.5. The density of cobalt on the other hand is even less than palladium. It is only 8.69 gm per cubic centimeter, specific gravity 8.7. This yields a greater volume or thickness of coating and, consequently, some saving of metal weight and reduced cost. Palladium-cobalt coated surface provides a hard surface finish (ASTM E18) thus decreasing wear and increasing durability. Palladium-cobalt coated surface also has very low coefficient of friction 0.43 compared to hard gold 0.60 thus providing lower mating and unmating forces for electrical contacts (1) 2. Palladium-cobalt has smaller grain size (ASTM E112), 50 – 150 Angstroms, compared to Hard Gold 200 – 250 Angstroms (1)2. 5 – 15 nanometer, compared to hard gold 20 – 25 nanometer (1)2. Palladium-cobalt has low porosity (ASTM B799) 0.2 porosity index compared to hard gold 3.7 porosity index (1)2. Palladium-cobalt coated surface has higher ductility (ASTM B489) 3-7 than that of hard gold <3 (1)2. The palladium-cobalt coated surface is also thermally more stable 395°C than hard gold 150°C, and silver 170°C. The following Table 1 compares the hardness range of electrodeposited palladium-cobalt with other electrodeposited noble metals and alloys (3,4).2

TABLE 1 - Hardness of Noble Metals

Approximate Hardness (HK25)

Gold

50–250

Palladium

75–600

Platinum

150–550

Palladium-Nickel

300–650

Palladium-Cobalt

500–650

Rhodium

750–1100

Ruthenium

600–1300


1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Some specific hazards statements are given in Section 7 on Hazards.

ICS
25.220.40 Metallic. Including electrolytic depositions, cathodic coatings, autocatalytic coatings, etc. / Металлические покрытия. Включая электролитическое осаждение, катодные покрытия и т.д.
Сборник ASTM
02.05 Metallic and Inorganic Coatings; Metal Powders and Metal Powder Products / Металлические и неорганические покрытия, Металлические порошки, изделия из металлического порошка
Тематика
Paints & Related Coatings