4.1 Obtaining samples of high-level waste created during the reprocessing of spent nuclear fuels presents unique challenges. Generally, high-level waste is stored in tanks with limited access to decrease the potential for radiation exposure to personnel. Samples must be obtained remotely because of the high radiation dose from the bulk material and the samples; samples require shielding for handling, transport, and storage. The quantity of sample that can be obtained and transported is small due to the hazardous nature of the samples as well as their high radiation dose.
4.2 Many high-level wastes have been treated to remove strontium (Sr) or cesium (Cs), or both, have undergone liquid volume reductions through pumping and forced evaporation or have been pH modified, or both, to decrease corrosion of the tanks. These processes, as well as waste streams added from multiple process plant operations, often resulted in precipitation, and produced multiphase wastes that are heterogeneous. Evaporation of water from waste with significant dissolved salts concentrations has occurred in some tanks due to the high heat load associated with the high-level waste and by pumping and intentional evaporative processing, resulting in the formation of a saltcake or crusts, or both. Organic layers exist in some waste tanks, creating additional heterogeneity in the wastes.
4.3 Many of the sampling systems have limitations including the ability to sample varying depths in the tank and the depth of sampling. Sampling in Hanford tanks is constrained by riser diameter, riser location and riser availability.
4.4 Due to these extraordinary challenges, substantial effort in research and development has been expended to develop techniques to provide grab samples of the contents of the high-level waste tanks. A summary of the primary techniques used to obtain samples from high-level waste tanks is provided in Table 1. These techniques will be summarized in this guideline with the assumption that the tank headspace is adequately ventilated during sampling.
Область применения1.1 This guide addresses techniques used to obtain samples from tanks containing high-level radioactive waste created during the reprocessing of spent nuclear fuels. Guidance on selecting appropriate sampling devices for waste covered by the Resource Conservation and Recovery Act (RCRA) is also provided by the United States Environmental Protection Agency (EPA) (1).2 Vapor sampling of the head-space is not included in this guide because it does not significantly affect slurry retrieval, pipeline transport, plugging, or mixing.
1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.