These test methods are a generally reliable means of identifying the generic types of fibers present in a sample of textile material of unknown composition. The methods are generally not useful for distinguishing fibers of the same generic class from different manufacturers or for distinguishing different fiber types of the same generic class from one producer.
Many fibers are chemically modified by their producers in various ways so as to alter their properties. It is possible for such modifications to interfere seriously with the analyses used in these test methods. Considerable experience and diligence of the analyst may be necessary to resolve satisfactorily these difficulties.
Dyes, lubricants, and delustrants are not present normally in amounts large enough to interfere with the analyses.
These test methods are not recommended for acceptance testing of commercial shipments because of the qualitative nature of the results and because of the limitations previously noted.
Note 2—For statements on precision and bias of the standard quantitative test methods for determining physical properties for confirmation of fiber identification refer to the cited test method. The precision and bias of the nonstandard quantitative test methods described are strongly influenced by the skill of the operator. The limited use of the test methods for qualitative identification cannot justify the effort that would be necessary to determine the precision and bias of the techniques.
Область применения1.1 These test methods cover the identification of the following textile fibers used commercially in the United States:
Acetate (secondary)NylonAcrylic NytrilAnidex OlefinAramid PolycarbonateAsbestosPolyesterCotton RamieCuprammonium rayonRayon (viscose)Flax SaranFluorocarbonSilkGlass SpandexHemp TriacetateJute VinalLycocellVinyonModacrylicWoolNovoloid1.2 Man-made fibers are listed in 1.1 under the generic names approved by the Federal Trade Commission and listed in Terminology D123, Annex A1 (except for fluorocarbon and polycarbonate). Many of the generic classes of man-made fibers are produced by several manufacturers and sold under various trademark names as follows (Note 1):
Acetate Acele, Aviscon, Celanese, Chromspun, EstronAcrylic Acrilan, Courtelle, Creslan, Dralon, Orlon, ZefranAnidex Anim/8Aramid Arenka, Conex, Kevlar, Nomex, TwaronCuprammoniumBembergFluorocarbonTeflonGlass Fiberglas, Garan, Modiglass, PPG, UltrastrandLyocell TencelModacrylicDynel, Kanecaron, Monsanto SEF, VerelNovoloidKynolPolyamide (Nylon) 6Caprolan,Enka, Perlon, Zefran, EnkalonPolyamide (Nylon) 6, 6Antron, Blue C, Cantrece, Celanese Phillips, Enka NylonPolyamide (Nylon) (other)Rilsan(nylon 11), Qiana, StanylEnka,(Nylon 4,6)Nytril DarvanOlefin Durel, Herculon, Marvess, PolycrestPolyesterAvlin, Beaunit, Blue C, Dacron, Encron, Fortrel, Kodel, Quintess, Spectran, Trevira, Vyoron, Zephran, Diolen, VectranRayon Avril, Avisco, Dynacor, Enka, Fiber 700, Fibro, Nupron, Rayflex, Suprenka, Tyrex, Tyron, CordenkaSaran Enjay, SaranSpandex Glospun, Lycra, Numa, UnelTriacetateArnelVinyon Avisco, Clevyl, Rhovyl, Thermovyl, VolpexNote 1--The list of trademarks in does not include all brands produced in the United States or abroad and imported for sale in the United States. The list does not include examples of fibers from two (or more) generic classes of polymers spun into a single filament. Additional information on fiber types and trademarks is given in References (1,2, and 3).
1.3 Most manufacturers offer a variety of fiber types of a specific generic class. Differences in tenacity, linear density, bulkiness, or the presence of inert delustrants normally do not interfere with analytic tests, but chemical modifications (for such purposes as increased dyeability with certain dyestuffs) may affect the infrared spectra and some of the physical properties, particularly the melting point. Many generic classes of fibers are sold with a variety of cross-section shapes designed for specific purposes. These differences will be evident upon microscopical examination of the fiber and may interfere with the measurements of refractive indices and birefringence.
1.4 Microscopical examination is indispensable for positive identification of the several types of cellulosic and animal fibers, because the infrared spectra and solubilities will not distinguish between species. Procedures for microscopic identification are published in AATCC Method 20 and in References (4-12).
1.5 Analyses by infrared spectroscopy and solubility relationships are the preferred methods for identifying man-made fibers. The analysis scheme based on solubility is very reliable. The infrared technique is a useful adjunct to the solubility test method. The other methods, especially microscopical examination are generally not suitable for positive identification of most man-made fibers and are useful primarily to support solubility and infrared spectra identifications.
1.6 This includes the following sections:
SectionReferenced Documents2Birefringence by difference of refractive indices34, 35 Terminology3Density24- 27 Infrared Spectroscopy, Fiber Identification by17-23Melting Point28-33Microscopical Examination, Fiber Identification by9, 10Reference Standards7Sampling, Selection, Preparation and Number of Specimens6Scope1Solubility Relationships, Fiber Identification Using 11-16Summary of Test Methods4Significant and Use1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See Note 3.