The thermal conductivity of both undisturbed and remolded soil specimens as well as soft rock specimens is used to analyze and design systems used, for example, in underground transmission lines, oil and gas pipelines, radioactive waste disposal, and solar thermal storage facilities.
Note 1—Notwithstanding the statements on precision and bias contained in this test method; the precision of this test method is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D 3740 are generally considered capable of competent and objective testing. Users of this test method are cautioned that compliance with Practice D 3740 does not in itself assure reliable testing. Reliable testing depends on many factors; Practice D 3740 provides a means of evaluating some of those factors.
Область применения1.1 This test method presents a procedure for determining the thermal conductivity of soil and soft rock using a transient heat method. This test method is applicable for both undisturbed and remolded soil specimens and soft rock specimens. This test method is suitable only for isotropic materials.
1.2 This test method is applicable to dry materials over a wide temperature range from <0 to >100°C, depending on the suitability of the thermal needle probe construction to temperature extremes. This method may also be used for specimens containing moisture. However, care must be taken to prevent significant error from: (1) redistribution of water due to thermal gradients resulting from heating of the needle probe, and (2) phase change (melting) of ice in specimens with temperatures <0°C. Both of these errors can be minimized by adding less total heat to the specimen either through minimizing power applied to the needle probe and/or minimizing the heating duration of the measurement.
1.3 For satisfactory results in conformance with this test method, the principles governing the size, construction, and use of the apparatus described in this test method should be followed. If the results are to be reported as having been obtained by this test method, then all pertinent requirements prescribed in this test method shall be met.
1.4 It is not practicable in a test method of this type to aim to establish details of construction and procedure to cover all contingencies that might offer difficulties to a person without technical knowledge concerning the theory of heat flow, temperature measurement, and general testing practices. Standardization of this test method does not reduce the need for such technical knowledge. It is recognized also that it would be unwise, because of the standardization of this test method, to resist in any way the further development of improved or new methods or procedures by research workers.
1.5 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only.
1.6 All measured and calculated values shall conform to the guidelines for significant digits and rounding established In Practice D 6026.
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.