Каталог стандартов

+7 (495) 223-46-76 +7 (812) 309-78-59
inform@normdocs.ru

ASTM D5783-95(2012)

Заменен
Standard Guide for Use of Direct Rotary Drilling with Water-Based Drilling Fluid for Geoenvironmental Exploration and the Installation of Subsurface Water-Quality Monitoring Devices — 7 стр.
Значение и использование

4.1 Direct-rotary drilling may be used in support of geoenvironmental exploration and for installation of subsurface water-quality monitoring devices in unconsolidated and consolidated materials. Direct-rotary drilling may be selected over other methods based on advantages over other methods. In drilling unconsolidated sediments and hard rock, other than cavernous limestones and basalts where circulation cannot be maintained, the direct-rotary method is a faster drilling method than the cable-tool method. The cutting samples from direct-rotary drilled holes are usually as representative as those obtained from cable-tool drilled holes however, direct-rotary drilled holes usually require more well-development effort. If however, drilling of water-sensitive materials (that is, friable sandstones or collapsible soils) is anticipated, it may preclude use of water-based rotary-drilling methods and other drilling methods should be considered.

4.1.1 The application of direct-rotary drilling to geoenvironmental exploration may involve sampling, coring, in-situ or pore-fluid testing, or installation of casing for subsequent drilling activities in unconsolidated or consolidated materials. Several advantages of using the direct-rotary drilling method are stability of the borehole wall in drilling unconsolidated formations due to the buildup of a filter cake on the wall. The method can also be used in drilling consolidated formations. Disadvantages to using the direct-rotary drilling method include the introduction of fluids to the subsurface, and creation of the filter cake on the wall of the borehole that may alter the natural hydraulic characteristics of the borehole.

Note 3The user may install a monitoring device within the same borehole wherein sampling, in-situ or pore-fluid testing, or coring was performed.

4.2 The subsurface water-quality monitoring devices that are addressed in this guide consist generally of a screened or porous intake and riser pipe(s) that are usually installed with a filter pack to enhance the longevity of the intake unit, and with isolation seals and low-permeability backfill to deter the movement of fluids or infiltration of surface water between hydrologic units penetrated by the borehole (see Practice D5092). Inasmuch as a piezometer is primarily a device used for measuring subsurface hydraulic heads, the conversion of a piezometer to a water-quality monitoring device should be made only after consideration of the overall quality of the installation, including the quality of materials that will contact sampled water or gas.

Note 4Both water-quality monitoring devices and piezometers should have adequate casing seals, annular isolation seals and backfills to deter movement of contaminants between hydrologic units. Область применения

1.1 This guide covers how direct (straight) rotary-drilling procedures with water-based drilling fluids may be used for geoenvironmental exploration and installation of subsurface water-quality monitoring devices.

Note 1The term direct with respect to the rotary-drilling method of this guide indicates that a water-based drilling fluid is pumped through a drill-rod column to a rotating bit. The drilling fluid transports cuttings to the surface through the annulus between the drill-rod column and the borehole wall. Note 2This guide does not include considerations for geotechnical site characterization that are addressed in a separate guide.

1.2 Direct-rotary drilling for geoenvironmental exploration and monitoring-device installations will often involve safety planning, administration and documentation. This standard does not purport to specifically address exploration and site safety.

1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

1.5 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.

ICS
73.100.30 Equipment. Including equipment for seabed mining / Оборудование для бурения и выемки грунта. Включая оборудование для разработки морского дна
Сборник ASTM
04.08 Soil and Rock (I): D420 – D5876 / Грунт и Горные породы (I): D420 – D5876
Тематика
Geotechnical Engineering