1.1 This test method provides a procedure for performing a torsional ring shear test under a drained condition to determine the residual shear strength of cohesive soils. An undisturbed specimen can be used for testing. However, obtaining a natural slip surface specimen, determining the direction of field shearing, and trimming and properly aligning the usually non-horizontal shear surface in the ring shear apparatus is difficult. As a result, this test method focuses on the use of a remolded specimen.This test method is performed by deforming a presheared, remolded specimen at a controlled displacement rate until the constant minimum drained shear resistance is offered on a single shear plane determined by the configuration of the apparatus. An unlimited amount of continuous shear displacement can be achieved to obtain a residual strength condition. Generally, three or more normal stresses are applied to a test specimen to determine the drained residual failure envelope. A separate test specimen may be used for each normal stress.
1.2 A shear stress-displacement relationship may be obtained from this test method. However, a shear stress-strain relationship or any associated quantity, such as modulus, cannot be determined from this test method because possible soil extrusion and volume change prevents defining the height needed in the shear strain calculations. As a result, shear strain cannot be calculated but shear displacement can be calculated.
1.3 The selection of normal stresses and final determination of the shear strength envelope for design analyses and the criteria to interpret and evaluate the test results are the responsibility of the engineer or office requesting the test.
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
1.4 The values stated in SI units are to be regarded as the standard. The values stated in inch-pound units are approximated.