Formerly under the jurisdiction of Committee D02 on Petroleum Products, Liquid Fuels, and Lubricants, this test method was withdrawn in January 2022 in accordance with section 10.6.3 of the Regulations Governing ASTM Technical Committees, which requires that standards shall be updated by the end of the eighth year since the last approval date.
Значение и использование5.1 Background—In the HEUI fuel system, the engine oil from the oil sump not only lubricates the engine, it also supplies a high-pressure oil system that takes oil from the main gallery and pressurizes it up to 20.7 MPa in a plunger pump (see Fig. A1.1). This oil is used to operate unit injectors that, when used in combination with intensifiers, increase the fuel injection pressure up to 145 MPa, independent of engine speed. The electronic controls permit varied injection timing and duration to provide optimum fuel economy and emissions. This system may, however, circulate all the oil in the sump in approximately 8 s; as a consequence, aeration of the oil can occur with some engine oils. International determined that 8 % oil aeration was the limit beyond which engine operation and performance would be impaired in actual service.
5.1.1 Prior to 1994, the ability of an engine lubricant to resist aeration was measured by Test Method D892. During the development of the API CG-4 category in 1994, however, it was found11 that this bench test did not correlate with aeration in the International T 444E engine. The EOAT was developed, therefore, to provide a better measurement of the ability of a lubricant to resist aeration during engine operation. This test has been included in API CG-4, CH-4, and CI-4 categories for heavy-duty diesel engine oils.
5.2 Method—The data obtained from the use of this test method provide a comparative index of the aeration resistance of engine oils used in medium- and heavy-duty truck diesel engines.
5.3 Use—The tendency of engine oils to aerate in direct-injection, turbocharged diesel engines is influenced by a variety of factors, including engine oil formulation variables, oil temperature, sump design and capacity, residence time of the oil in the sump, and the design of the pressurized oil systems. In some engine-oil-activated injection systems, the residence time of the oil in the sump is insufficient to allow dissipation of aeration from the oil. As a consequence, aerated oil can be circulated to the injector intensifiers, adversely affecting the injection timing characteristics and engine operation.
Область применения1.1 This test method was designed to evaluate an engine oil's resistance to aeration in automotive diesel engine service. It is commonly referred to as the Engine Oil Aeration Test (EOAT). The test is conducted using a specified 7.3 L, direct-injection, turbocharged diesel engine on a dynamometer test stand. This test method was developed as a replacement for Test Method D892 after it was determined that this bench test did not correlate with oil aeration in actual service. The EOAT was first included in API Service Category CG-4 in 1995.
Note 1—Companion test methods used to evaluate engine oil performance for specification requirements are discussed in the latest revision of Specification D4485.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.2.1 Exception—Where there is no direct SI equivalent, for example, screw threads, national pipe threads/diameters, and tubing size.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
1.4 This test method is arranged as follows:
Section
Scope
Referenced Documents
Terminology
Summary of Test Method
Significance and Use
Apparatus
Reagents and Materials
Preparation of Apparatus
Calibration
Test Procedure
Determination of Test Results
Report
Precision and Bias
Keywords
Engine System Drawings