5.1 This sampling practice is useful for converting material taken from ingots or other solid materials into a homogeneous solid sample suitable for direct excitation on a spark atomic emission or X-ray fluorescence spectrometer. The resultant button may itself be chipped to provide specimens for test methods requiring solutions or chips.
5.2 This practice has been used extensively for the preparation of zirconium, zirconium alloy, titanium, and titanium alloy materials, and is applicable to other reactive, refractory, ferrous and nonferrous alloys, such as cobalt, cobalt alloys, niobium, nickel, nickel alloys, cast irons, steels, stainless steels, tantalum, tool steels, and tungsten.
Область применения1.1 This practice covers the preparation of solid samples of reactive and refractory metals and alloys by electric arc remelting. The samples for melting may be in the form of drillings, chunks, chips, turnings, wire, sponge, powder briquettes, and powdered metals.
1.1.1 This practice is also suitable for preparation of solid samples of other metals, such as cast irons, steels, stainless steels, tool steels, nickel, nickel alloys, cobalt, and cobalt alloys.
1.2 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 9.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.