5.1 These test methods cover procedures for determining the mean grain size, and the distribution of grain intercept lengths or grain areas, for polycrystalline metals and nonmetallic materials with equiaxed or deformed grain shapes, with uniform or duplex grain size distributions, and for single phase or multiphase grain structures.
5.2 The measurements are performed using semiautomatic digitizing tablet image analyzers or automatic image analyzers. These devices relieve much of the tedium associated with manual measurements, thus permitting collection of a larger amount of data and more extensive sampling which will produce better statistical definition of the grain size than by manual methods.
5.3 The precision and relative accuracy of the test results depend on the representativeness of the specimen or specimens, quality of specimen preparation, clarity of the grain boundaries (etch technique and etchant used), the number of grains measured or the measurement area, errors in detecting grain boundaries or grain interiors, errors due to detecting other features (carbides, inclusions, twin boundaries, and so forth), the representativeness of the fields measured, and programming errors.
5.4 Results from these test methods may be used to qualify material for shipment in accordance with guidelines agreed upon between purchaser and manufacturer, to compare different manufacturing processes or process variations, or to provide data for structure-property-behavior studies.
Область применения1.1 These test methods are used to determine grain size from measurements of grain intercept lengths, intercept counts, intersection counts, grain boundary length, and grain areas.
1.2 These measurements are made with a semiautomatic digitizing tablet or by automatic image analysis using an image of the grain structure produced by a microscope.
1.3 These test methods are applicable to any type of grain structure or grain size distribution as long as the grain boundaries can be clearly delineated by etching and subsequent image processing, if necessary.
1.4 These test methods are applicable to measurement of other grain-like microstructures, such as cell structures.
1.5 This standard deals only with the recommended test methods and nothing in it should be construed as defining or establishing limits of acceptability or fitness for purpose of the materials tested.
1.6 The sections appear in the following order:
Section
Section
Scope
1
Referenced Documents
2
Terminology
3
Definitions
3.1
Definitions of Terms Specific to This Standard
3.2
Symbols
3.3
Summary of Test Method
4
Significance and Use
5
Interferences
6
Apparatus
7
Sampling
8
Test Specimens
9
Specimen Preparation
10
Calibration
11
Procedure:
Semiautomatic Digitizing Tablet
12
Intercept Lengths
12.3
Intercept and Intersection Counts
12.4
Grain Counts
12.5
Grain Areas
12.6
ALA Grain Size
12.6.1
Two-Phase Grain Structures
12.7
Procedure:
Automatic Image Analysis
13
Grain Boundary Length
13.5
Intersection Counts
13.6
Mean Chord (Intercept) Length/Field
13.7.2
Individual Chord (Intercept) Lengths
13.7.4
Grain Counts
13.8
Mean Grain Area/Field
13.9
Individual Grain Areas
13.9.4
ALA Grain Size
13.9.8
Two-Phase Grain Structures
13.10
Calculation of Results
14
Test Report
15
Precision and Bias
16
Grain Size of Non-Equiaxed Grain Structure Specimens
Annex A1
Examples of Proper and Improper Grain Boundary Delineation
Annex A2
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.