Каталог стандартов

+7 (495) 223-46-76 +7 (812) 309-78-59
inform@normdocs.ru

ASTM G100-89(2021)

Действует
Standard Test Method for Conducting Cyclic Galvanostaircase Polarization — 4 стр.
Значение и использование

3.1 In this test method, susceptibility to localized corrosion of aluminum is indicated by a protection potential (Eprot) determined by cyclic galvanostaircase polarization (1). The more noble this potential, the less susceptible is the alloy to initiation of localized corrosion. The results of this test method are not intended to correlate in a quantitative manner with the rate of propagation of localized corrosion that one might observe in service.

3.2 The breakdown (Eb), and protection potentials (Eprot) determined by the cyclic GSCP method correlate with the constant potential corrosion test (immersion-glassware) result for aluminum (1, 6, 7). When the applied potential was more negative than the GSCP Eprot, no pit initiation was observed. When the applied potential was more positive than the GSCP Eprot, pitting occurred even when the applied potential was less negative than Eb.

3.2.1 Severe crevice corrosion occurred when the separation of Eb and Eprot was 500 mV or greater and Eprot was less than −400 mV Vs. SCE (in 100 ppm NaCl) (1, 6, 8). For aluminum, Eprot determined by cyclic GSCP agrees with the repassivation potential determined by the scratch potentiostatic method (1, 9). Both the scratch potentiostatic method and the constant potential technique for determination of Eprot require much longer test times and are more involved techniques than the GSCP method.

3.3 DeBerry and Viebeck (3-5) found that the breakdown potentials (Eb) (galvanodynamic polarization, similar to GSCP but no kinetic information) had a good correlation with the inhibition of localized corrosion of 304L stainless steel by surface active compounds. They attained accuracy and precision by avoiding the strong induction effect which they observed by the potentiodynamic technique.

3.4 If this test method is followed using the specific alloy discussed it will provide (GSCP) measurements that will reproduce data developed at other times in other laboratories.

3.5 Eb and Eprot

obtained are based on the results from eight different laboratories that followed the standard procedure using aluminum alloy 3003-H14 (UNS A93003). Eb and Eprot are included with statistical analysis to indicate the acceptable range.

Область применения

1.1 This test method covers a procedure for conducting cyclic galvanostaircase polarization (GSCP) to determine relative susceptibility to localized corrosion (pitting and crevice corrosion) for aluminum alloy 3003-H14 (UNS A93003) (1).2 It may serve as guide for examination of other alloys (2-5). This test method also describes a procedure that can be used as a check for one's experimental technique and instrumentation.

1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

ICS
25.220.20 Surface. Including anodization, conversion coating, thermal spraying, etc. / Обработка поверхности. Включая анодирование, покрытия, химически взаимодействующие с подложкой, термораспыление и т.д.
Сборник ASTM
03.02 Corrosion of Metals; Wear and Erosion / Коррозия металлов; Износ и разрушение (эрозия) металлов